
MUSIC ANALYSIS AND KOLMOGOROV COMPLEXITY

David Meredith
Aalborg University

dave@create.aau.dk

ABSTRACT

The goal of music analysis is to find the most satisfying ex-
planations for musical works. It is proposed that this can
best be achieved by attempting to write computer programs
that are as short as possible and that generate representa-
tions that are as detailed as possible of the music to be ex-
plained. The theory of Kolmogorov complexity suggests
that the length of such a program can be used as a mea-
sure of the complexity of the analysis that it represents.
The analyst therefore needs a way to measure the length
of a program so that this length reflects the quality of the
analysis that the program represents. If such an effective
measure of analysis quality can be found, it could be used
in a system that automatically finds the optimal analysis
for any passage of music. Measuring program length in
terms of number of source-code characters is shown to be
problematic and an expression is proposed that overcomes
some but not all of these problems. It is suggested that the
solutions to the remaining problems may lie either in the
field of concrete Kolmogorov complexity or in the design
of languages specialized for expressing musical structure.

1. INTRODUCTION

Bent [1, p. 1] defined music analysis as the “resolution of
a musical structure into relatively simpler constituent ele-
ments, and the investigation of the functions of those ele-
ments within that structure”. When attempting to find ex-
planations for the structures of musical works, music ana-
lysts typically have two goals: first, they want to find ex-
planations that are as simple as possible; and second, they
want to account for as much detail as possible. These two
goals often conflict: in order to account for more detail, a
more complex explanation is usually required. The music
analyst must therefore attempt to find an optimal explana-
tion that strikes just the right balance between simplicity
and level of detail. For some musical passages, there may
be two or more distinct, but equally good, explanations.
For example, two equally simple explanations might ac-
count for different (but equally important) aspects of the
music’s structure; or there may be two or more equally
good ways of explaining the same structural aspects of a
musical passage. In such cases, the music may give rise to
a multistable percept, where it can be interpreted equally

Copyright: c©2012 David Meredith . This is an open-access article distributed

under the terms of the Creative Commons Attribution License 3.0 Unported, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

satisfactorily in more than one way [2].
The view adopted here is that a musical analysis can

be thought of as being an algorithm or program that, when
executed, generates as output a representation of the music
being analysed. Such a program therefore embodies an ex-
planation for those structural aspects of the music that are
encoded in the output representation. Kolmogorov com-
plexity theory [3–7] suggests that the length of such a pro-
gram can then be used as a measure of the complexity of
its corresponding explanation: the shorter the program, the
simpler—and, in general, the better—the explanation. The
level of structural detail that the explanation accounts for
corresponds to the level of detail with which the music is
encoded in the representation generated by the program.
Typically, much of the detailed structure in the music will
not be encoded in the output of the program and will there-
fore go unexplained. It is assumed that the representation
generated by the program will be an explicit, in extenso
description of certain aspects of the structure of the music.
The program can therefore be seen as being a compressed
or compact encoding of the representation that it gener-
ates. On this view, the music analyst’s goal is to find the
shortest possible programs that generate the most detailed
representations of musical passages, works and corpora.

Music analysis is about finding the best ways of inter-
preting musical works. In other words, it is concerned
with finding the most satisfying perceptual organizations
that are consistent with the musical “surface”. This sur-
face could be either the notated score or a particular perfor-
mance. Of the two, a score will typically permit a higher
number of consistent perceptual organizations, since the
micro-structure of a performance will usually reflect the
particular perceptual organization (i.e., interpretation) of
the performer. Most theories of perceptual organization
have been based on one of two principles: the likelihood
principle of preferring the most probable interpretations
(originally due to Helmholtz [8]); and the minimum [9]
or simplicity [10] principle of preferring the simplest in-
terpretations. Typically, statistical approaches to musical
structure analysis (e.g., [11]) have applied the likelihood
principle, whereas theories in the tradition of Gestalt psy-
chology (e.g., [12]) apply the minimum principle. Indeed,
as van der Helm and Leeuwenberg [9, p. 153] point out, the
fundamental principle of Gestalt psychology, Koffka’s [13]
law of Prägnanz, which favours the simplest and most sta-
ble interpretation, can be seen as an “ancestor” of the min-
imum principle. For many years, the likelihood and mini-
mum principles were considered by psychologists to be in
competition. However, in 1996, Chater [10], drawing on
results in Kolmogorov’s [3] theory of complexity, pointed

mailto:dave@create.aau.dk
http://creativecommons.org/licenses/by/3.0/

out that the two principles are mathematically identical.
The work presented here relates closely to psychologi-

cal coding theories of perceptual organization that employ
the minimum or simplicity principle. In the coding theory
approach, a coding language [9] or pattern language [14]
is devised to represent the possible structures of patterns in
a particular domain. The preferred organization is then the
one that has the shortest encoding in the language. Coding
theories of this type have been proposed to explain the per-
ception of serial patterns [14–17], visual patterns [18, 19]
and musical patterns [12, 16, 20, 21].

Chater [10] points out that two shortcomings of coding
theories are, first, that each domain needs its own pattern
language; and, second, that the length of an encoding de-
pends to a certain extent on the specific design of the lan-
guage used. Chater claims, however, that these problems
can be overcome by applying the invariance theorem [5,
p. 104–107], a central result of Kolmogorov complexity
theory. This theorem states that the shortest description of
any object is invariant up to a constant between different
universal languages, a universal language being one that
is rich enough to express partial recursive functions. For-
tunately, all standard computer programming languages
(e.g., C, Lisp, Java) are universal languages. This suggests
that one might be able to meaningfully compare analyses
of a given musical passage by comparing the lengths of
programs representing these analyses, written in the same
programming language. Moreover, if an objective, effec-
tive method can be found for measuring program length
appropriately, then it becomes possible in principle to au-
tomate the process of searching for the best analysis of any
given passage, piece or corpus of music.

In the remainder of this paper, I introduce the idea of
representing a musical analysis (and therefore a particu-
lar interpretation of a passage of music) as a computer
program. I then address the problem of using the length
of such a program to evaluate its quality, relative to pro-
grams representing alternative analyses of the same musi-
cal structure.

2. REPRESENTING A MUSICAL ANALYSIS AS A
PROGRAM

Consider Figure 1, which shows the left-hand part of bars
35 to 48 of Chopin’s Étude in C major, Op. 10, No. 1. Sup-
pose we segment the passage so that each note onset starts
a new segment and then label each segment with the pitch
class of the notes in it. If we then merge adjacent segments
with the same pitch class content, then the resulting struc-
ture can be represented by the sequence of pitch classes,

9 2 7 0 5 11 4 9 2 7 0 5 11 4 . (1)

One possible way of understanding this sequence is as 14
unrelated numbers. Writing the sequence out in extenso
(as in (1)) expresses this interpretation. This interpretation
requires 14 unrelated pieces of information to be remem-
bered and encoded.

Sequence (1) can also be thought of as being con-

Figure 1. The bass part of bars 35 to 48 of Chopin’s Étude
in C major, Op. 10, No. 1.

Figure 2. The diatonic fourths pitch class cycle in C major.

structed by repeating the much shorter sequence,

9 2 7 0 5 11 4 . (2)

This seems to be a simpler and more satisfying way of un-
derstanding the sequence, since it recognizes some of the
structure in it and requires us to remember only 8 pieces
of information in order to reproduce it, namely, 7 unre-
lated numbers and the single operation of repeating this
7-number sequence.

A little more study reveals that sequence (2) is one turn
around the diatonic fourths cycle in C major, shown in Fig-
ure 2. If pi is the (i+ 1)th element in sequence (1), then

pi = (((i+ 2) mod 7) ∗ 5 + 11) mod 12 . (3)

Sequence (1) could therefore be encoded using just this
one formula, together with a specification that i should take
values from 0 to 13.

However, Eq. 3 requires us to remember and encode
5 unrelated numbers, 5 unrelated operations and the two
boundary values of i, making a total of 12 pieces of in-
formation. This interpretation therefore seems to be less
parsimonious than expressing the structure as two copies
of sequence (2).

Indeed, one could argue that the description in terms
of Eq. 3 is even more complex than the literal description
in (1). To reconstruct the structure from sequence (1), the
only additional piece of procedural information required is
that each element in the sequence is to be printed as it is
scanned. Whereas, to reconstruct the pitch class structure
using Eq. 3, one also needs to have an understanding of
precedence rules, the definitions of the various operations
used and a definition of some kind of iterating “for” loop
construct that allows the formula to be applied to succes-
sive values of i between the boundary values.

The advantages of using the formula in Eq. 3 over a lit-
eral description like sequence (1) only become apparent if
the sequence to be described is longer or if the formula
can also be used to describe other musical passages. For

#include<stdio.h>
main(){

printf("9 2 7 0 5 11 4 9 2 7 0 5 11 4");
}

Figure 3. C program that literally prints the pitch class
structure of the passage in Figure 1.

#include<stdio.h>
main(){

char i;
for(i=0;i<14;i++)

printf("%d ",(((i+2)%7)*5+11)%12);
}

Figure 4. C program that generates the pitch class struc-
ture of the passage in Figure 1 using the diatonic fourths
cycle in C major, shown in Figure 2.

example, an in extenso description of a sequence consist-
ing of four turns around the C major diatonic fourths circle
would require encoding 28 pieces of information, whereas
a description in terms of Eq. 3 would require no more infor-
mation than that needed to encode sequence (1). In other
words, if the length of such a sequence is n, then the length
of an explicit description is O(n) whereas the length of a
description using Eq. 3 is constant, i.e., O(1).

Another advantage of a description in terms of Eq. 3 is
that it can be parametrized and reused (with only minor
changes) to describe any sequence of pitch classes formed
by circulating around a diatonic fourths cycle of any length
and in any key.

To make the discussion more concrete, consider
Figure 3, which shows a C program that literally prints out
sequence (1), and Figure 4 which uses Eq. 3 to calculate
each value in the sequence. If we format these programs
so that they are as short as possible and ignore the initial
line that loads stdio.h, then the program in Figure 4 is 66
characters long, whereas that in Figure 3 is only 48 char-
acters long. Kolmogorov complexity theory tells us that
the complexity of an object is related to the length of the
shortest program that can generate it. The fact that the pro-
gram in Figure 4 is apparently longer than that in Figure 3
therefore seems to support the suggestion made above that
a literal description of sequence (1) is actually more parsi-
monious than one that employs Eq. 3.

However, if we were to cycle around the C major dia-
tonic fourths circle four times rather than just twice, then
we would generate the pitch class sequence

9 2 7 0 5 11 4 9 2 7 0 5 11 4 9 2 7 0 5 11 4 9 2 7 0 5 11 4 . (4)

This sequence is literally printed out by the C program
in Figure 7 and generated using Eq. 3 by the program in
Figure 5.

If the programs in Figure 5 and Figure 7 are formatted
so that they are as short as possible and the initial line that
loads stdio.h is ignored, then the program in Figure 5 is
shorter (66 characters) than that in Figure 7 (78 charac-
ters), supporting the point made above that the advantage
of using Eq. 3 only becomes apparent when the sequence
to be generated is somewhat longer than sequence (1).

As suggested above, we can also refactor Figure 5 so
that we define a separate function that encapsulates Eq. 3

#include<stdio.h>
main(){
char i;
for(i=0;i<28;i++)

printf("%d ",(((i+2)%7)*5+11)%12);
}

Figure 5. C program that generates sequence (4) using the
diatonic fourths cycle in C major, shown in Figure 2.

#include<stdio.h>

f(char k, char s, char l) {
char i;
for(i=0;i<l;i++)
printf("%d ",(((i+s)%7)*5+k+11)%12);

}

main(){
f(0,2,14);

}

Figure 6. C program that generates sequence (1) using
a function, f(k, s, `), such that k is the pitch class of the
tonic of the major key of the diatonic set, s is the starting
index in the cycle (0 being 11 more than the tonic pitch
class) and ` is the length of the sequence.

and allows us to generate any sequence formed by circu-
lating around a diatonic fourths cycle in any key. This has
been done in Figure 6. Note that, given the function f , de-
fined in Figure 6, we can now describe sequence (1) using
the very short expression f(0, 2, 14). We can also describe
any other diatonic fourths cycle sequence using a similarly
short expression. For example, the expression f(5, 4, 12)
generates the sequence

0 5 10 4 9 2 7 0 5 10 4 9 (5)

which is 12 consecutive steps around the F major diatonic
fourths circle, starting on C.

However, the program in Figure 6 is even longer (102
characters) than that in Figure 4. Thus, the ability to en-
code any member of a whole class of commonly-occurring
sequences by a parsimonious expression comes at the price
of having to define a custom function that must be included
in the “background” knowledge required for these parsi-
monious expressions to be decoded.

Nevertheless, a music analyst and a software engineer
would probably agree that, of the descriptions offered
above for sequence (1), the program in Figure 6 is the most
elegant, insightful and satisfying, despite being the longest
(at least in terms of characters). This seems to be in large
part due to the following:

1. the function f provides a very compact description
of an infinite set of structures of a type that com-
monly occurs in music; and

2. the function f allows each member of the set that it
defines to be encoded with a very short description,
given the definition of f .

In other words, a music analyst would prefer the descrip-
tion in Figure 6 because the function f is a short program
that allows many musical structures to be described parsi-
moniously and thus provides a very simple explanation for

#include<stdio.h>
main(){

printf("9 2 7 0 5 11 4 9 2 7 0 5 11 4 9 2 7 0 5 11 4 9 2 7 0 5 11 4");
}

Figure 7. C program that literally prints sequence (4).

a large set of musical passages of which the one in Figure 1
is an example.

However, if the pitch class structure of the passage in
Figure 1 were the only passage in the musical literature
that could be generated by a call to f , then we could not
reasonably consider the program in Figure 6 to be a good
analysis of this structure. And this seems to be reflected in
the fact that Figure 6 is longer than, for example, Figure 3.
In order to justify the claim that function f is a good ana-
lytical idea, we would have to show that it could be used
to produce parsimonious descriptions (i.e., good explana-
tions) of some other musical passages. That is, we would
have to write another program that uses the function f to
generate the pitch class structures of several passages (that
actually occur in interesting musical works). This program
would demonstrate the value of function f and this new
program as a whole would represent a higher quality anal-
ysis of the structures that it generates as output than the
program in Figure 6. Moreover, the superiority of this new
program would be reflected in the fact that the length of its
output would be considerably longer than that of Figure 6,
while the length of the two programs would be almost the
same.

The foregoing discussion suggests that the quality of the
analysis represented by a program P that generates an out-
put X , increases with the value `P0

/`P where `P0
is the

length of a program that just literally prints the same out-
put as P (i.e., X), and `P is the length of P itself. P
is clearly an encoding of X and `P0/`P is the compres-
sion ratio achieved on X by the encoding P . The music
analyst’s goal is therefore to losslessly compress music as
much as possible, or, more simply, to find the shortest pro-
gram that generates the music to be explained. This is a
special case of Occam’s razor which states that one should
prefer the simplest theory that explains the facts, and Kol-
mogorov complexity explicates the notion of theory com-
plexity as the length in bits of the shortest description of
the theory in terms of a binary program on a universal com-
puter [5, pp. 341–343].

3. MEASURING THE LENGTH OF A PROGRAM

If we accept that the goal of music analysis is to find the
shortest program that generates the music to be explained,
then a music analyst is frequently going to be faced with
the problem of deciding which of two programs that gener-
ate the same output is the shorter. In cases where the output
of one program is a proper subset of the output of another,
then the analyst will need to decide which of the two pro-
grams (that now generate different outputs) achieves the
better compression. The analyst therefore needs to be able
to measure and compare the lengths of programs.

In the examples above, the length of each program has
been given in terms of the number of characters in the

most compactly formatted version of the program’s source
code, written in C. Clearly, one would not count unneces-
sary whitespace characters or characters within comments;
notwithstanding, there are still several reasons why source-
code length in characters cannot be used directly to mea-
sure the quality of the analysis that a program represents.

One obvious reason for this is that user-defined iden-
tifiers for variables, constants and functions can be of ar-
bitrary length. Thus, if program P1 has fewer characters
than P2, we can easily make P1 longer than P2 simply by
lengthening the names of the variables in P1, which clearly
does not change the quality of the analysis represented by
P1. Suppose we try to solve this by stipulating that each
user-defined identifier only counts as 1 character. This rule
has been used by Zenil and Delahaye [22] in their com-
petition to find the shortest universal Turing machine im-
plementation. But what if a program has more identifiers
than there are characters in the character set being used?
Indeed, not even all the characters in the character set can
be made available for use as identifiers—digit characters
cannot be used and others must be reserved for operators
and reserved words (e.g., ‘+’, ‘-’, ‘[’ etc. in the C pro-
gramming language). In fact, in ANSI C, there are only 53
permissible 1-character identifiers (the Roman letters and
‘ ’) [23, p. 192].

It is actually only justified to count 1 character for each
user-defined identifier if the number of distinct tokens used
by the program (excluding literal strings and numbers) is
no more than the number of characters in the character set.
Such tokens include

• the names of functions, constants and variables—
both predefined (e.g., ‘printf’) and user-defined
(e.g., ‘f’, ‘i’ in Figure 6);

• reserved words for constructs and types (e.g., ‘for’,
‘int’);

• required punctuation marks, such as the ‘end of
statement’ character (‘;’ in C) and commas;

• operators (e.g., ‘=’, ‘+’).

C uses seven-bit ASCII [23, p. 229] so the character set in
this case contains only 128 characters. It is therefore easy
to see how the number of distinct tokens may exceed the
number of available characters.

Another way of measuring the length of a token is in
terms of the number of bits required to uniquely identify
it among the complete set of distinct tokens used by (or
available to) the program. We would therefore need to
know the minimum value of n such that we can assign a
unique bit string of length n to each distinct token (exclud-
ing literal numbers and strings). If there are Ntok such
distinct tokens, then this minimum value of n is given by

ntok = dlog2Ntoke, which is the amount of Shannon in-
formation in the token, assuming all tokens are equally
probable [24]. Similarly, the length of a string can be mea-
sured in terms of the amount of information in it. Thus, if
Nchr is the size of the set of permissible string characters,
then the least number of bits capable of encoding a string
character is nchr = dlog2Nchre and the length in bits of
(i.e., the information in) a string containing ` characters is
`nchr. The length in bits of a literal number can be defined
to be the size of the number’s type. For example, in C, typ-
ically a long uses 8 bytes or 64 bits of memory, an int uses
32 bits and a char uses 8 bits. 1 Putting all this together,
we get the following expression for estimating the length
of a C program, P , in bits:

`(P) = ntokNtok(P) + nchr

Nstr(P)∑
i=1

`chr(si) +

Nnum(P)∑
i=1

`(ni) ,

(6)
where

• Ntok(P) is the number of tokens in P that are nei-
ther literal strings nor literal numbers;

• Nstr(P) is the number of literal strings in P ;

• `chr(si) is the length in characters of the ith string
in P ;

• Nnum(P) is the number of literal numbers in P ; and

• `(ni) is the size in bits of the type of the ith literal
number in P .

The total number of distinct tokens, Ntok, is the sum
of the number of tokens defined within the language itself
(including any libraries loaded), which we can denote by
NL

tok, and the number of user-defined tokens in the pro-
gram, NP

tok. Therefore ntok = dlog2(NL
tok+N

P
tok)e. If we

assume that the program is written in C and that the stdio.h
library is loaded, then NL

tok is about 150. So for all the
programs given in this paper, ntok = 8. Table 1 shows the
lengths of the programs presented above in terms of num-
ber of characters (`chr(P)) and in terms of bits using Eq. 6
(`(P)). Note that the initial line in each program that loads
the stdio.h library has been ignored when calculating the
values in this table.

As can be seen in the third column of Table 1, measur-
ing program length using Eq. 6 generally produces a lower
value than measuring in terms of the number of charac-
ters in the most compactly formatted version of the source
code. The values in the third column also show that the
proportional reduction in the length value is greater for
those programs that capture some of the structure in the
pitch class sequence (Figures 4, 5 and 6) than for those
that literally print the output (Figures 3 and 7). Moreover,
measuring in terms of Eq. 6 solves the problem of arbitrary
identifier length.

1 These values are actually implementation-dependent. The sizeof
function can be used to determine the sizes of these types in bytes on
a particular system.

Program, P 7`chr(P) `(P) `(P)/(7`chr(P))
Figure 3 336 291 0.87
Figure 4 462 381 0.82
Figure 5 462 381 0.82
Figure 7 546 501 0.92
Figure 6 714 573 0.80

Table 1. Lengths of programs in this paper. `chr(P) is the
length in characters of the most compactly formatted ver-
sion of the program. This value is multiplied by 7 because
C uses the 7-bit ASCII character set. `(P) is the length in
bits calculated using Eq. 6. Both measures ignore the line
that imports the stdio.h library.

4. DEPENDENCY OF PROGRAM LENGTH ON
LANGUAGE

Although Eq. 6 overcomes the problem of identifiers being
of an arbitrary length, it does not solve a deeper problem
caused by the fact that a program’s length depends on the
syntax of the language in which it is written and the con-
structs that this language makes available. For example,
programs for symbolic manipulation tend to be shorter in
Lisp than in Fortran whereas the reverse is true for pro-
grams that carry out numerical computations. If every pro-
gram in Lisp were, say, 70% of the length of the “equiva-
lent” program in Fortran, then this would not be a problem
in the present context, because we are here only concerned
with the relative lengths of programs written in the same
language. However, the situation is not as simple as this.
In fact, if we have two Lisp programs, PL1 , P

L
2 , and two

equivalent Fortran programs, PF1 , P
F
2 , then, in general, it

is possible for PL1 to be shorter than PL2 while PF1 is longer
than PF2 , even if we measure program length in a way that
takes into account the arbitrariness of identifier length. We
are also here glossing over the non-trivial problem of defin-
ing when two programs in different languages are “equiv-
alent”.

We therefore need a method of measuring the complex-
ity of a musical analysis that is either independent of the
language in which the analysis is expressed or based on
some generally-agreed ‘reference’ language. An obvious
place to look for such a measure is in the theory of Kol-
mogorov complexity.

5. KOLMOGOROV COMPLEXITY

Let φ0 be an additively optimal universal partial recursive
function that we call the reference function and let U be a
Turing machine that computes φ0 that we call the reference
machine. The conditional Kolmogorov complexity of an
object x given an object y is defined to be

Cφ0(x|y) = min{l(p) : φ0(〈y, p〉) = x}, (7)

where

• l(p) is the length in bits of the program p that com-
putes x on the reference machine U when given in-
put y; and

• 〈y, p〉 is a function that maps the input y and the pro-
gram p onto a single binary string.

x, y and p are understood to be represented as binary
strings. The (unconditional) Kolmogorov complexity of an
object x is then given by

C(x) = Cφ0(x|ε) (8)

where ε is the empty string. Note that the Kolmogorov
complexity of an object is always defined relative to some
specified reference function which defines a particular de-
scription method which must be an additively optimal uni-
versal partial recursive function [5, pp. 104–106].

The invariance theorem [5, pp. 105] tells us that, within
the set of partial recursive functions that compute x given
y, there exists an additively optimal universal partial recur-
sive function, φ0. It follows thatCφ0

(x|y) ≤ Cφ(x|y)+cφ
for all partial recursive functions φ and all x and y, where
cφ is a constant that depends only on φ. It can then be
shown that, if φ and φ′ are two additively optimal func-
tions, then

|Cφ(x|y)− Cφ′(x|y)| ≤ cφφ′ (9)

where cφφ′ is a constant that depends only the choice of φ
and φ′. In other words, the complexity of x given y is inde-
pendent of the description method up to a fixed constant for
all inputs and outputs. Such a description language could
be a standard programming language such as Lisp or C.
Thus if CLisp(x|y) and CC(x|y) are the complexities of
x given y in Lisp and C, respectively, then the invariance
theorem tells us that |CLisp(x|y) − CC(x|y)| ≤ c where
c is a constant. In other words, the complexity of x given
y will be the same, up to a constant, regardless of the lan-
guage in which we express the program that computes x.
However, crucially, we do not know whether the shortest
C program that computes x will be longer or shorter than
the shortest Lisp program that computes x. The invariance
theorem therefore helps us if we are interested in know-
ing approximately the length of the shortest program that
computes a given object (i.e., its Kolmogorov complex-
ity). However, it does not help us directly if we want to
be able to meaningfully compare the lengths of a number
of different programs that compute some given object x,
even if all the programs are written in the same universal
programming language. This casts doubt on Chater’s [10]
claim that the invariance theorem solves the problem of the
language-dependency of encoding length.

One way forward might be to adopt the approach taken
by Chaitin [25,26] and Tromp [27] who have defined short,
concrete universal machines implemented from weak el-
ementary operations (see also [5, pp. 206–211]). How-
ever, such an approach would require the expression of
musical analyses in a rather low-level language based on
lambda calculus or combinatory logic, which a music an-
alyst might find to be too cumbersome. A more practical
approach might therefore be to return to the development
of coding languages specially designed for expressing mu-
sical structure, as has been done recently by Meredith [21].

6. CONCLUSIONS AND FUTURE DIRECTIONS

I have proposed that the goal of music analysis should be
to devise the shortest possible programs that generate the
music to be explained. The reasoning behind this is that a
short program that generates a given passage, gives more
insight into the structure of that passage and a more sat-
isfying explanation of it than a longer program. This is
just a special case of Occam’s razor. If we accept this as
the goal of music analysis, then, given two programs that
generate the same passage of music, an analyst needs to be
able to decide which of the two is shorter. This, in turn,
implies that the music analyst must be able to measure the
length of a program in such a way that this length accu-
rately reflects the quality of the analysis represented by the
program. I have shown that measuring program length in
terms of number of source-code characters is problematic
and I have tentatively proposed an expression for measur-
ing program length that overcomes the problem of arbi-
trary identifier length. However, there remains a deeper
problem caused by the fact that program length depends
on the syntax of the programming language and the con-
structs that the language makes available. This problem
is as follows: if PA1 , P

A
2 are two programs in language A

and PA1 is shorter than PA2 and PB1 , P
B
2 are two programs

in language B equivalent to PA1 , P
A
2 , respectively, then

it is possible for PB1 to be longer than PB2 . This means
that whether or not one program is shorter than another
depends on the language in which the two programs are
written. I have shown that the invariance theorem in Kol-
mogorov complexity theory does not help to resolve this
problem. However, it may be possible to find a solution
to the program-length measuring problem in the field of
concrete Kolmogorov complexity where the goal is to de-
sign concrete universal machines implemented from weak
elementary operations. An alternative approach would be
to return to the development of coding languages that are
specially designed for expressing musical structure.

7. REFERENCES

[1] I. Bent, Analysis. The New Grove Handbooks in Mu-
sic, Macmillan, 1987. (Glossary by W. Drabkin).

[2] P. Kruse and M. Stadler, eds., Ambiguity in Mind and
Nature: Multistable Cognitive Phenomena, vol. 64 of
Springer Series in Synergetics. Berlin: Springer, 1995.

[3] A. N. Kolmogorov, “Three approaches to the quanti-
tative definition of information,” Problems of Informa-
tion Transmission, vol. 1, no. 1, pp. 1–7, 1965.

[4] G. J. Chaitin, “On the length of programs for comput-
ing finite binary sequences,” Journal of the Association
for Computing Machinery, vol. 13, no. 4, pp. 547–569,
1966.

[5] M. Li and P. Vitányi, An Introduction to Kolmogorov
Complexity and Its Applications. Berlin: Springer,
third ed., 2008.

[6] R. J. Solomonoff, “A formal theory of inductive infer-
ence (Part I),” Information and Control, vol. 7, no. 1,
pp. 1–22, 1964.

[7] R. J. Solomonoff, “A formal theory of inductive infer-
ence (Part II),” Information and Control, vol. 7, no. 2,
pp. 224–254, 1964.

[8] H. L. F. von Helmholtz, Treatise on Physiological Op-
tics. New York: Dover, 1910/1962. Trans. and ed. by J.
P. Southall. Originally published in 1910.

[9] P. A. van der Helm and E. L. Leeuwenberg, “Accessi-
bility: A criterion for regularity and hierarchy in visual
pattern codes,” Journal of Mathematical Psychology,
vol. 35, pp. 151–213, 1991.

[10] N. Chater, “Reconciling simplicity and likelihood prin-
ciples in perceptual organization,” Psychological Re-
view, vol. 103, no. 3, pp. 566–581, 1996.

[11] D. Temperley, Music and Probability. Cambridge,
MA.: MIT Press, 2007.

[12] D. Deutsch and J. Feroe, “The internal representation
of pitch sequences in tonal music,” Psychological Re-
view, vol. 88, no. 6, pp. 503–522, 1981.

[13] K. Koffka, Principles of Gestalt Psychology. New
York: Harcourt Brace, 1935.

[14] H. A. Simon, “Complexity and the representation of
patterned sequences of symbols,” Psychological Re-
view, vol. 79, no. 5, pp. 369–382, 1972.

[15] E. L. L. Leeuwenberg, “Quantitative specification of
information in sequential patterns,” Psychological Re-
view, vol. 76, no. 2, pp. 216–220, 1969.

[16] F. Restle, “Theory of serial pattern learning: Structural
trees,” Psychological Review, vol. 77, no. 6, pp. 481–
495, 1970.

[17] P. C. Vitz and T. C. Todd, “A coded element model of
the perceptual processing of sequential stimuli,” Psy-
chological Review, vol. 76, no. 5, pp. 433–449, 1969.

[18] J. Hochberg and E. McAlister, “A quantitative ap-
proach to figural “goodness”,” Journal of Experimental
Psychology, vol. 46, no. 5, pp. 361–364, 1953.

[19] E. L. J. Leeuwenberg, “A perceptual coding language
for visual and auditory patterns,” American Journal of
Psychology, vol. 84, no. 3, pp. 307–349, 1971.

[20] H. A. Simon and R. K. Sumner, “Pattern in music,” in
Formal representation of human judgment (B. Klein-
muntz, ed.), New York: Wiley, 1968.

[21] D. Meredith, “A geometric language for representing
structure in polyphonic music,” in Proceedings of the
13th International Society for Music Information Re-
trieval Conference (ISMIR 2012), (Porto, Portugal),
2012.

[22] H. Zenil and J.-P. Delahaye, “The shortest uni-
versal machine implementation,” 2008. http:
//www.mathrix.org/experimentalAIT/
TuringMachine.html. Accessed 28 July 2012.

[23] B. W. Kernighan and D. M. Ritchie, The C Program-
ming Language. Englewood Cliffs, NJ.: Prentice Hall,
1988.

[24] C. E. Shannon, “A mathematical theory of communica-
tion,” The Bell System Technical Journal, vol. 27, no. 3,
pp. 379–423, 1948.

[25] G. J. Chaitin, “A new version of algorithmic infor-
mation theory,” Complexity, vol. 1, no. 4, pp. 55–59,
1995/1996.

[26] G. J. Chaitin, “How to run algorithmic information the-
ory on a computer: Studying the limits of mathematical
reasoning,” Complexity, vol. 2, no. 1, pp. 15–21, 1996.

[27] J. Tromp, “Binary lambda calculus and combinatory
logic,” 2011. Available at <http://homepages.
cwi.nl/˜tromp/cl/LC.ps>. Accessed 30 July
2012.

http://www.mathrix.org/experimentalAIT/TuringMachine.html
http://www.mathrix.org/experimentalAIT/TuringMachine.html
http://www.mathrix.org/experimentalAIT/TuringMachine.html
http://homepages.cwi.nl/~tromp/cl/LC.ps
http://homepages.cwi.nl/~tromp/cl/LC.ps

	 1. Introduction
	 2. Representing a musical analysis as a program
	 3. Measuring the length of a program
	 4. Dependency of program length on language
	 5. Kolmogorov complexity
	 6. Conclusions and future directions
	 7. References

