
PITCH SPELLING ALGORITHMS

David Meredith

City University, London

ABSTRACT

In this paper I introduce a new algorithm called ps13 that
reliably computes the correct pitch names (e.g., C�4, B�5
etc.) of the notes in a passage of tonal music, when given
only the onset-time and MIDI note number of each note in the
passage. ps13 correctly predicts the pitch names of 99.81%
of the notes in a test corpus containing 41544 notes and
consisting of all the pieces in the first book of J. S. Bach's
Das Wohltemperirte Klavier (BWV 846--869). Three previous
algorithms (those of Cambouropoulos (1996, 1998, 2002),
Longuet-Higgins (1987) and Temperley (2001)) were run on
the same corpus of 41544 notes. On this corpus,
Cambouropoulos's algorithm made 2599 mistakes, Longuet-
Higgins's algorithm made 265 mistakes and Temperley's
algorithm made 122 mistakes. As ps13 made only 81
mistakes on the same corpus, this suggests that ps13 may be
more robust than previous algorithms that attempt to perform
the same task.

1. INTRODUCTION

In this paper I focus on the problem of constructing a robust
pitch spelling algorithm—that is, an algorithm that reliably
computes the correct pitch names (e.g., C�4, B�5 etc.) of the
notes in a passage of tonal music, when given only the
onset-time, MIDI note number and possibly the duration of
each note in the passage.

There are good practical and scientific reasons for attempting
to develop a robust pitch spelling algorithm. First, until such
an algorithm is devised, it will be impossible to construct a
robust MIDI-to-notation transcription algorithm—that is ,
an algorithm that reliably computes a correct score of a
passage when given only a MIDI file of the passage as input.
Commercial music notation programs (e.g., Sibelius
(www.sibelius.com), Coda Finale (www.codamusic.com) and
Nightingale (www.ngale.com)) typically use MIDI-to-
notation transcription algorithms to allow the user to
generate a notated score from a MIDI file encoding a
performance of the passage to be notated. However, the
MIDI-to-notation transcription algorithms currently used in
commercial music notation programs are crude and unreliable.
Also, existing audio transcription systems generate not
notated scores but MIDI-like representations as output (see,
for example, Walmsley, 2000). So if one wishes to produce a
notated score from a digital audio recording, one typically
needs a MIDI-to-notation transcription algorithm
(incorporating a pitch spelling algorithm) in addition to an
audio transcription system.

Knowing the letter-names of the pitch events in a passage i s
also indispensible in music information retrieval and musical
pattern discovery. For example, the occurrence of a motive

on a different degree of a scale (e.g., C-D-E-C restated as E-F-
G-E) might be perceptually significant even if the
corresponding chromatic intervals in the patterns differ. Such
matches can be found using fast, exact-matching algorithms
if the pitch names of the notes are encoded, but exact-
matching algorithms cannot be used to find such matches if
the pitches are represented using just MIDI note numbers. If a
robust pitch spelling algorithm existed, it could be used to
compute the pitch names of the notes in the tens of thousands
of MIDI files of works that are freely available online,
allowing these files to be searched more effectively by a
music information retrieval (MIR) system.

a b c

Figure 1: Examples of notes with identical MIDI note
numbers being spelt differently in different tonal contexts
(from Piston 1978, p. 8).

In the vast majority of cases, the correct pitch name for a
note in a passage of tonal music can be determined by
considering the rôles that the note is perceived to play in the
perceived harmonic structure and voice-leading structure of
the passage. For example, when played in isolation in an
equal-tempered tuning system, the first soprano note in
Figure 1a would sound the same as the first soprano note in
Figure 1b. However, in Figure 1a, this note is spelt as a G�4
because it is perceived to function as a leading note in A
minor; whereas in Figure 1b, the first soprano note is spelt as
an A�4 because it functions as a submediant in C minor.
Similarly, the first alto note in Figure 1b would sound the
same as the first alto note in Figure 1c in an equal-tempered
tuning system. However, in Figure 1b the first alto note i s
spelt as an F�4 because it functions in this context as a
subdominant in C minor; whereas, in Figure 1c, the first alto
note functions as a leading note in F� minor so it is spelt as
an E�4.

&

?

c

c

w
w

w
w

w
w

w
w

w
w
w#

w
w
b

˙ œ œb

w
w

T

w
w

. .˙

j

œ

w
w

œ œ

.

.˙˙

C: I +II2 I

Figure 2: Should the E�s be spelt as D�s? (From Piston
1978, p. 390).

Nevertheless, it is not always easy to determine the correct
pitch name of a note by considering the harmonic structure
and voice-leading structure of its context. For example, as

Piston (1978, p.390) observes, the tenor E�4 in the third and
fourth bars of Figure 2 should be spelt as a D�4 if one
perceives the harmonic progression here to be +II2—I as
shown. But spelling the soprano E�5 in the fourth bar as D�5
would result in a strange melodic line.

Such cases where it is difficult to determine the correct pitch
name of a note in a tonal work are relatively
rare—particularly in Western tonal music of the so-called
‘common practice’ period (roughly the 18th and 19th
centuries). In the vast majority of cases, those who study and
perform Western tonal music agree about how a note should
be spelt in a given tonal context. This poses an interesting
problem for cognitive science, namely: what are the
cognitive processes involved when a musically trained
individual determines the correct pitch name of a note in a
passage of tonal music?

A good way of trying to answer this question is to attempt to
construct a robust pitch spelling algorithm that operates in a
way that is consistent with what is known about the
neurology, physiology, psychophysics and psychology of
expert music perception and cognition. Such a pitch spelling
algorithm could serve the valuable scientific purpose of
furthering our understanding of the cognitive processes
underlying an interesting intellectual ability exhibited by
many individuals who study and perform Western tonal
music.

The vast majority of notes in authoritative published editions
of scores of common practice tonal works are generally
agreed to be spelt correctly by those who understand Western
staff notation. Therefore a pitch spelling algorithm or
computational model of pitch spelling can be evaluated
objectively by running it on tonal works and comparing the
pitch names it predicts with those of the corresponding notes
in authoritative published editions of scores of the works.
However, this can only be done accurately and quickly if one
has access to encodings of these authoritative scores in the
form of computer files that can be compared automatically
with the pitch spelling algorithm’s output.

2. A COMPARISON OF THREE PITCH
SPELLING ALGORITHMS

In this section, I compare the performance of three pitch
spelling algorithms on a single test corpus. The algorithms
compared are those of Cambouropoulos (1996, 1998, 2002),
Longuet-Higgins (1987) and Temperley (2001).

2 . 1 . The Test Corpus

The test corpus used in the comparison consists of
representations of the scores of all 24 Preludes and all 24
Fugues in the first book of J. S. Bach’s Das Wohltemperirte
Klavier (BWV 846–869) encoded in what I call OPND
format.1 Each OPND representation is a set of triples, (t,n ,d) ,

1 OPND stands for “onset, pitch-name, duration”.

each triple giving the onset time, t, the pitch name, p and the
duration, d of a single note (or sequence of tied notes) in the
score. The onset time and duration of each note are expressed
as integer multiples of the largest common divisor of all the
notated onset times and note durations in the score.
Temperley’s algorithm cannot deal with situations in which
two or more notes with the same pitch begin at the same
time. Thus, wherever two or more notes with the same pitch p
began simultaneously at time t, all notes with pitch p and
onset time t were removed from the OPND file except the one
with the longest duration. This resulted in a test corpus
containing 41544 notes.2

The “piano-roll” or MIDI-like input representations accepted
by the algorithms compared in this study were derived
automatically from the OPND representations of the pieces in
the test corpus.

2 . 2 . Longuet-Higgins’s algorithm

Pitch spelling is one of the tasks performed by Longuet-
Higgins’s (1987) music.p program. Longuet-Higgins has
published the full POP-11 source code of this program
(Longuet-Higgins, 1987, pp. 120–126; 1993, pp.
486–492). As I am not familiar with POP-11, I translated just
the pitch spelling portion of music.p into Lisp. This was
possible because the pitch spelling portion of music.p
operates independently of the rhythmic part.3

music.p accepts input in the form of a list of triples, (p,t,t')
each triple giving the “keyboard position” p together with
the onset time t and the offset time t' in centiseconds of each
note. The keyboard position p is an integer indicating the
key that would have to be pressed on a normal piano
keyboard in order to perform the note, with C�3 mapping
onto 0, C�3 and D�3 mapping onto 1, C�4 mapping onto 12
and so on (i.e., p = MIDI NOTE NUMBER - 48).

The algorithm then computes a value of “sharpness” q for
each note in the input (Longuet-Higgins, 1987, p. 111). The
sharpness of a pitch name indicates the position of the pitch
name on the line of fifths (Temperley, 2001, p. 117) and i s
therefore essentially the same as Temperley’s (2001, p. 118)
concept of “tonal pitch class”.

In Longuet-Higgins’s algorithm, if q1 and q2 are the
sharpnesses of two notes then the interval between the notes
is defined to have “degree” δq = q1 - q2. If |δq| < 6, the interval
is defined to be “diatonic”; if |δq| > 6, it is “chromatic”; and if
|δq| = 6, it is “diabolic” (Longuet-Higgins, 1987, p. 112).
Longuet-Higgins’s algorithm attempts to spell notes so that
the degree between each note and the tonic at the point at
which the note occurs is not chromatic (Longuet-Higgins,

2 The test corpus is available online at
http://www.titanmusic.com/data.html.

3 This Lisp implementation of the pitch spelling portion of
music.p is available online at
http://www.titanmusic.com/software.html.

1987, p. 113). The algorithm also incorporates various rules
for dealing with chromatic passages (Longuet-Higgins,
1987, pp. 113–4).

When my implementation of Longuet-Higgins's algorithm
was run on the test corpus described above, it made only 265
errors—that is, it predicted the correct pitch name for 99.36%
of the notes.

2 . 3 . Cambouropoulos’s algorithm

Unlike Longuet-Higgins, Cambouropoulos has not published
an implementation of his pitch spelling algorithm, nor was
he able to provide me with his own implementation when I
requested it. I therefore implemented my own version of his
method, based on his published descriptions of i t
(Cambouropoulos 1996, 1998, 2002).4

Cambouropoulos’s method involves first converting the
input representation into a sequence of pitch classes in which
the pitch classes are in the order in which they occur in the
music (the pitch classes of notes that occur simultaneously
being ordered arbitrarily). Having derived an ordered set of
pitch classes from the input, Cambouropoulos’s algorithm
then processes the music a window at a time, each window
containing a fixed number of notes (set to a value between 9
and 15). Each window is positioned so that the first third of
the window overlaps the last third of the previous window.
Cambouropoulos allows ‘white note’ pitch classes (i.e., 0, 2 ,
4, 5, 7, 9 and 11) to be spelt in three different ways (e.g.,
pitch class 0 can be spelt as B� C� or D��) and ‘black note’
pitch classes to be spelt in two different ways (e.g., pitch
class 6 can be spelt as F� or G�). Given these restricted sets of
possible pitch names for each pitch class, the algorithm
computes all possible spellings for each window. A penalty
score is then computed for each of these possible window
spellings. The penalty score for a given window spelling i s
found by computing a penalty value for the interval between
each pair of notes in the window and summing these penalty
values. A given interval in a particular window spelling i s
penalised more heavily if it is an interval that occurs less
frequently in the major and minor scales. An interval is also
penalised if either of the pitch names forming the interval i s
a double-sharp or a double-flat. For each window, the
algorithm chooses the spelling that has the lowest penalty
score.

When I ran my implementation of Cambouropoulos’s method
on the test corpus, it made 2599 mistakes—that is, i t
predicted the correct pitch name for only 93.74% of the
notes. When Cambouropoulos ran his own implementation
of his method on the test corpus, he found that it made even
more errors than my implementation. This may be due to the
fact that my implementation generates three alternative

4 The Lisp code for this implementation of
Cambouropoulos’s pitch spelling algorithm is available
online at
http://www.titanmusic.com/software.html.

transpositions of the computed spelling and chooses the one
that results in the least number of errors.

2 . 4 . Temperley’s algorithm

Temperley’s (2001) pitch spelling algorithm is implemented
in his harmony program which forms one component of his
and Sleator's Melisma system.5 The harmony program
accepts input in the form of a “note-list” (Temperley 2001,
pp. 9–12) giving the MIDI note number of each note together
with its onset time and duration in milliseconds. The
harmony program also requires a specification of the metrical
structure of the input passage which can be generated by first
running the note-list through Temperley and Sleator's meter
program (another component of the Melisma system).

Temperley’s (2001, pp. 115–136) pitch spelling algorithm
searches for the spelling that best satisfies three “preference
rules”, the first of which stipulates that the algorithm should
“prefer to label nearby events so that they are close together
on the line of fifths” (Temperley 2001, p. 125). This rule i s
similar to the basic principle underlying Longuet-Higgins’s
algorithm (see above). The second rule states that if two
tones are separated by a semitone and the first tone is distant
from the key centre, then the interval between them should
preferably be spelt as a diatonic semitone rather than a
chromatic one (Temperley 2001, p. 129). The third of
Temperley’s preference rules steers the algorithm towards
spelling the notes so that a “good harmonic representation”
results (Temperley 2001, p. 131), a “good harmonic
representation” being one that allows Temperley’s harmony
program to generate a correct harmonic analysis of the
passage.

When Temperley’s algorithm was run on the test corpus, i t
made only 122 mistakes—that is, it predicted the correct
pitch name for 99.71% of the notes.

3. ps13: A NEW PITCH SPELLING
ALGORITHM6

In this section I describe a new pitch spelling algorithm,
ps13, which performs better than Temperley’s on the test
corpus described above. ps13 reliably computes the pitch
names of the notes in a passage of tonal music when given
only the onset time and MIDI note number of each note in the
passage. Meredith (2003) provides a detailed description of
the algorithm. ps13 is best understood to be in two parts,
Part I and Part II. Part I consists of the following steps:

1. computing for each pitch class 0≤ c ≤ 11 and
each note n in the input, a pitch letter name
S(c,n)∈{A,B,C,D,E,F,G}, calculated on the

5 The complete Melisma system together with documentation
is available online at
http://www.link.cs.cmu.edu/music-analysis/.

6 Patent pending (Meredith, 2003).

assumption that c is the tonic at the point in
the piece where n occurs;

2. computing for each note n in the input and
each pitch class 0≤ c ≤ 11 a value CNT(c,n)
giving the number of times that c occurs
within a context surrounding n that includes n,
some specified number Kpre of notes
immediately preceding n and some specified
number Kpost of notes immediately following
n;

3. computing for each note n and each letter name
l, the set of pitch classes
C(n,l) = {c | S(c,n) = l};

4. computing N(l,n)=∑c ∈ C(n,l) CNT(c,n) for each
note n and each pitch letter name l;

5. computing for each note n, the letter name l
for which N(l,n) is a maximum.

Part II of the algorithm corrects those instances in the output
of Part I where a neighbour note or passing note i s
erroneously predicted to have the same letter name as either
the note preceding it or the note following it.

In order to determine the values of Kpre and Kpost that give the
best results, ps13 was run on the test corpus 2500 times, each
time using a different pair of values (Kpre,Kpost) chosen from
the set {(Kpre,Kpost) | 1 ≤ Kpre, Kpost ≤ 50}. For each pair of values
(Kpre,Kpost), the number of errors made by ps13 on the test
corpus was recorded.

ps13 made fewer than 122 mistakes (i.e., performed better
than Temperley’s algorithm) on the test corpus for 2004 of
the 2500 (Kpre,Kpost) pairs tested (i.e., for 80.160% of the
(Kpre,Kpost) pairs). ps13 performed best on the test corpus
when Kpre was set to 33 and Kpost was set to either 23 or 25.
With these parameter values, ps13 made only 81 errors on the
test corpus—that is, it correctly predicted the pitch names of
99.805% of the notes in the test corpus. The mean number of
errors made by ps13 over all 2500 (Kpre,Kpost) pairs was
109.082 (i.e., 99.737% of the notes were correctly spelt on
average over all 2500 (Kpre,Kpost) pairs). Even this average
value is better than the result obtained by Temperley’s
algorithm for this test corpus. The worst result was obtained
when both Kpre and Kpost were set to 1. In this case, ps13 made
1117 errors (97.311% correct). However, provided Kpre i s
greater than about 14 and Kpost is greater than about 21, ps13
predicts the correct pitch name for over 99.75% of the notes
in the test corpus.

4. CONCLUSIONS AND FURTHER
WORK

A new pitch spelling algorithm ps13 was shown to perform
better than three previous pitch spelling algorithms on a test
corpus containing 41544 notes and consisting of all the
pieces in the first book of J. S. Bach’s Das Wohltemperirte
Klavier. However, more algorithms need to be compared with
ps13 and all the algorithms need to be run on a variety of

stylistically different corpora before it can be claimed that
the new algorithm is the most robust pitch spelling
algorithm currently available. Further testing will probably
show that the algorithm that works best on one style may not
work best on another style.

5. REFERENCES

1. Cambouropoulos, E. (1996). A general pitch interval
representation: Theory and applications. Journal o f
New Music Research, 25, 231–251.

2. Cambouropoulos, E. (1998). Towards a General
Computational Theory of Musical Structure.
Unpublished PhD dissertation, University of
Edinburgh.

3. Cambouropoulos, E. (2002). Pitch Spelling: A
Computational Model. Music Perception, To appear.

4. Longuet-Higgins, H. C. (1987). The Perception of
Melodies. In Longuet-Higgins, H. C. (ed). Mental
Processes: Studies in Cognitive Science. British
Psychological Society/MIT Press, London.
pp.105–129.

5. Meredith, D. (2003). Method of computing the pitch
names of notes in MIDI-like music representations.
Patent filing submitted to UK Patent Office on 11
April 2003. Available online at
http://www.titanmusic.com/papers.html.

6. Piston, W. (1978). Harmony. Gollancz, London.

7. Temperley, D. (2001). The Cognition of Basic
Musical Structures. MIT Press, Cambridge, MA.

8. Walmsley, P. J. (2000). Signal Separation of Musical
Instruments. PhD dissertation, Engineering
Department, University of Cambridge.

